All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit the Lymphoma Coalition.
Introducing
Now you can personalise
your Lymphoma Hub experience!
Bookmark content to read later
Select your specific areas of interest
View content recommended for you
Find out moreThe Lymphoma Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the Lymphoma Hub cannot guarantee the accuracy of translated content. The Lymphoma Hub and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The Lymphoma & CLL Hub is an independent medical education platform, sponsored by Beigene and Roche, and supported through educational grants from Bristol Myers Squibb, Ipsen Biopharmaceuticals, Pfizer, and Pharmacyclics LLC, an AbbVie Company and Janssen Biotech, Inc., administered by Janssen Scientific Affairs, LLC View funders.
Bookmark this article
On Saturday 9 December 92017 during an oral abstract session at the 59th Annual meeting American Society of Hematology (ASH), Lukas P. Frenzel of the Center of Integrated Oncology Cologne-Bonn at the University of Cologne in Cologne, Germany, on behalf of his colleagues, presented results from their clinical study, which was designed to better understand the genetic causes of treatment resistance towards venetoclax in chronic lymphocytic leukemia (CLL).
This abstract (#263), “Mechanisms of Venetoclax Resistance in Chronic Lymphocytic Leukemia,” was presented during Oral Session: 641. “Biology and Pathophysiology, excluding Therapy: Therapeutic Resistance in CLL”. The summary here provides data from the presentation at the session and may supersede date in the pre-published ASH abstract.
While this was a small exploratory study, it’s notable that the mutations in BTG1 and homozygous deletions in CDKN2A/B occurred in a relatively large percentage of patients. Whole exome sequencing from 8 of these patients before the initiation of venetoclax therapy and at the time of venetoclax resistance revealed diverse patterns of clonal evolution.
The authors of this study agreed that in order to further pinpoint genetic mechanisms of venetoclax resistance, larger studies with repeated longitudinal sampling of CLL cell material under therapy and at disease progression/relapse are necessary.
Understanding your specialty helps us to deliver the most relevant and engaging content.
Please spare a moment to share yours.
Please select or type your specialty
Your opinion matters
Subscribe to get the best content related to lymphoma & CLL delivered to your inbox