All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit the Lymphoma Coalition.
Introducing
Now you can personalise
your Lymphoma Hub experience!
Bookmark content to read later
Select your specific areas of interest
View content recommended for you
Find out moreThe Lymphoma Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the Lymphoma Hub cannot guarantee the accuracy of translated content. The Lymphoma Hub and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
The Lymphoma & CLL Hub is an independent medical education platform, sponsored by Beigene and Roche, and supported through educational grants from Bristol Myers Squibb, Ipsen Biopharmaceuticals, Lilly, Pfizer, and Pharmacyclics LLC, an AbbVie Company and Janssen Biotech, Inc., administered by Janssen Scientific Affairs, LLC View funders.
Bookmark this article
On March 10–12 2017, the EHA-SWG meeting on Rare Lymphomas took place in Barcelona, Spain, and was jointly chaired by Prof. Martin Dreyling, from Klinikum der Universität München, Germany, and Prof. Marie-José Kersten, from the Academic Medical Center, Amsterdam, The Netherlands.
On March 11th 2017, Prof. Dr. Med. George Lenz, from Universitätsklinikum Münster, Germany, gave a presentation titled “Biology of MYC-driven lymphomas”.
Prof. Lenz began the talk by explaining the biologic role of MYC:
The talk then focused on Burkitt Lymphoma (BL), of which nearly all cases harbor MYC rearrangements: t(8;14), t(2;8), or t(8;22). Gene expression profiling differentiates BL from molecular DLBCL subtypes and high-throughput sequencing have identified new insights into the biology of BL.
TCF3 and ID3 mutations activate the PI3K pathway, which is constitutively activated in BL. Previously, it has been reported that activation of MYC and PI3K pathway results in BL development in mice (Sander et al. Cancer Cell. 2012).
It has been found that MYC expression is detected in a fairly large proportion of patients with DLBCL. Additionally, DLBCLs which contain MYC rearrangements have been reported to have worse survival after treatment with R-CHOP than those which harbor wild type MYC.
Double Hit Lymphomas (DHLs) are usually DLBCLs with MYC and BCL2 or BCL6 translocations. DHL does not currently refer to lymphomas in which MYC translocations occur with other chromosomal translocations. It is not a specific diagnosis; however, it is sometimes referred to. The term “double hit” implies that these lymphomas harbor only two genetic aberrations. DLBCL cases that express MYC and BCL2 are characterized by adverse prognosis and have an increased risk of CNS relapse.
MCL is characterized by a poor prognosis, and BCR signaling is active in most MCLs. MALT1 links BCR signaling to the NFkB pathway and MALT1 downregulation has been shown to induce toxicity in some MCL subsets as well as significantly reduces tumor growth in vivo. Pharmacologic inhibition of MALT1 also reduces cell viability in MALT1-activated MCLs.
MALT1 regulated the gene expression network of MYC in MALT1-activated MCLs. MALT1 post-transcriptionally regulated MYC expression by preventing its proteasomal degradation.
MYC is expressed in a large proportion of primary MCLs and MYC expression is associated with a poorer OS.
Prof. Lenz concluded the talk with four key points:
Understanding your specialty helps us to deliver the most relevant and engaging content.
Please spare a moment to share yours.
Please select or type your specialty
Your opinion matters
Subscribe to get the best content related to lymphoma & CLL delivered to your inbox